Follow the instructions for each question and show enough of your work so that I can follow your thought process. If I can't read your work, answer or there is no justification to a solution you will receive little or no credit!

1. If f is differentiable at x_{0} and $a \in \mathbb{R}$, prove that

$$
\lim _{h \rightarrow 0} \frac{f\left(x_{0}+a h\right)-f\left(x_{0}\right)}{h}=a f^{\prime}\left(x_{0}\right) .
$$

2. Suppose g is continuous at $x=0$. For what values of $n \in \mathbb{N}$ is the function $f(x)=x^{n} g(x)$ is differentiable at $x=0$?
3. For $a, b>0$ define $f(x)$ by

$$
f(x)= \begin{cases}\int_{a}^{b} t^{x} d t & x \neq-1 \\ \log b-\log a & x=-1\end{cases}
$$

Prove that f is continuous at $x=-1$.
4. Let $f(x)=x^{2} \sin \left(\frac{1}{x}\right)$ and $g(x)=\sin x$. Prove that

$$
\lim _{x \rightarrow 0} \frac{f(x)}{g(x)} \text { exists, but } \lim _{x \rightarrow 0} \frac{f^{\prime}(x)}{g^{\prime}(x)} \text { does not exist. }
$$

5. Suppose $f:[a, b] \rightarrow \mathbb{R}$ is a continuous function such that $f(x) \geq 0$ for all $x \in[a, b]$. If

$$
\int_{a}^{b} f=0
$$

prove that $f(x)=0$ for all $x \in[a, b]$.
6. Suppose f is Lipschitz with constant L on $[0,1]$. Prove that

$$
\left|\int_{0}^{1} f(x) d x-\frac{1}{n} \sum_{j=1}^{n} f\left(\frac{j}{n}\right)\right| \leq \frac{L}{n}
$$

7. Let $E \subseteq \mathbb{R}$. Recall χ_{E} is the function such that $\chi_{E}(x)=1$ for $x \in E$ and zero otherwise. Does there exist a set $E \subseteq[0,1]$ such that for any $0 \leq a<b \leq 1$,

$$
\int_{a}^{b} \chi_{E}=\frac{b-a}{2} ?
$$

8. Let $f(x)$ be a continuous function on $[0,1]$ such that for every $0 \leq a<b \leq 1$ the following holds:

$$
\int_{a}^{(a+b) / 2} f(x) d x=\int_{(a+b) / 2}^{b} f(x) d x
$$

Prove that f is constant on $[0,1]$.
9. Let E be any countable subset of \mathbb{R}. Prove that E has measure zero.

